Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{CuI}-\mathrm{O} 1^{\prime}$	$1.9603(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.372(3)$
$\mathrm{CuI}-\mathrm{N} 1^{\prime}$	$1.9701(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.386(3)$
$\mathrm{N} I-\mathrm{N} 2$	$1.321(2)$	$\mathrm{C} 7-\mathrm{O} 2$	$1.222(3)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.333(3)$	$\mathrm{C} 7-\mathrm{Ol}$	$1.271(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.324(3)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.516(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(3)$	$\mathrm{C} 8-\mathrm{O} 3$	$1.246(3)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.507(3)$	$\mathrm{C} 8-\mathrm{O} 4$	$1.261(3)$
$\mathrm{Ol}^{\prime}-\mathrm{Cul-N1}$			
Symmetry code: (i) $1-x, 1-y, 1-z$.			

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

D-H. \cdot A	D-H	H . . A	D . . A	D-H.
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{1}$	0.90	2.72	3.109 (3)	108
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.90	2.36	2.688 (3)	102
O88-H88A $\cdots \mathrm{Ol}^{11}$	0.85	1.98	2.825 (3)	177
O88-H88B . . $\mathrm{O}^{\text {¹1 }}$	0.85	1.91	2.682 (3)	151
O99-H99A. . $\mathrm{O}^{\text {2 }}$	0.85	1.97	2.804 (3)	168
O99-H998 . . O4 ${ }^{\text {- }}$	0.85	1.97	2.694 (3)	143

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1+x, y, z$; (iii) $2-x, 1-y, 1-z$; (iv) $1+x, y-1, z$ (v) $x-1, y, z$.

The crystal was lost before measurements for absorption corrections could be made. Other available crystals showed insignificant diffraction. The range of expected transmission factors is relatively small $(0.76-0.87)$ due to the crystal size $(0.2 \times 0.1 \times 0.1 \mathrm{~mm})$ and the low value of $\mu\left(1.391 \mathrm{~mm}^{-1}\right)$. The H atoms of the aromatic ring were placed in calculated positions. The two H atoms associated with each of the water molecules and that on N 2 were located from a difference Fourier synthesis and their positions improved with the HIMP facility of $X P$ (Siemens, 1990).

Data collection: XSCANS (Siemens, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: $X P$.

EMH acknowledges the support of the IMCC EC/US consortium.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1155). Services for accessing these data are described at the back of the journal.

References

Conflant, P., Drache, M., Wignacourt, J.-P., Lagrenee, M. \& Mernari, B. (1992). J. Alloys Compd, 188, 165-169.

El Gueddi, A., Guesmi, S., Mernari, B., Stoeckli-Evans, H., Ribas, J., Vicente, R. \& Lagrenee, M. (1996). Polyhedron, 15, 4283-4288.
El Gueddi, A., Mernari, B. \& Lagrenee, M. (1998). Ann. Chim. Sci. Mater. 23, 305-308.
Mernari, B., Abraham, F., Lagrenee, M. \& Bremard, C. (1999). J. Chem. Soc. Submitted.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crristal Structures. University of Göttingen, Germany.
Siemens (1990). XP. Interactive Molecular Graphics Program. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sueur, S., Lagrenee, M., Abraham, F. \& Bremard, C. (1987). J. Heterocycl. Chem. 24, 1285-1289.

Acta Cryst. (1999). C55, 555-557

(1-Phenyl-1H-1,2,3,4-tetrazole-5-thiolato-S)bis(triphenylphosphine)silver(I) methanol solvate

Kieran C. Molloy, Mary F. Mahon and Marie C. Barret
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, England. E-mail: chskcm@bath.ac.uk
(Received 17 June 1998; accepted 6 January 1999)

Abstract

The title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}$, contains trigonal-planar silver coordinated to the thiotetrazole ligand via sulfur. The presence of methanol, which hydrogen bonds to the tetrazole ring, weakens the donor capacity of the ring N atoms, preventing their interaction with silver.

Comment

The structure of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Ag}\left(\mathrm{SCN}_{4} \mathrm{Ph}\right)$, solvated with a molecule of non-coordinating $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, has been reported recently (Noth et al., 1998). We now report and compare the crystal structure of the same compound as its methanol solvate, which forms part of our general interest in the coordination chemistry of thiotetrazoles (Deeth et al., 1992). The gross structure adopted by the title compound, (I), is essentially the same as that reported previously (Noth et al., 1998); silver is coordinated in a trigonal-planar manner by two triphenylphosphine ligands and the thiotetrazole ligand is coordinated via its S atom. In the discussion below, the numbering scheme of Fig. I is applied to both determinations for clarity of comparison.

(I)

The key difference between the two determinations is the angle at sulfur and the role of the N 4 atom. In the earlier work, the angle at sulfur is acute $\left[90.8(2)^{\circ}\right]$, which allows close approach of N 4 to silver ($2.897 \AA$) from above the $\mathrm{P}_{2} \mathrm{AgS}$ plane (torsion angle $\mathrm{N} 4-\mathrm{C} 37-$ Sl-Ag1 117.5°). Although this does not perturb the planarity of the $\mathrm{P}_{2} \mathrm{SAg}$ unit (sum of angles at Ag 359.9°), it was deemed responsible for the 4.8° (not 5.2° as cited) difference in the two $\mathrm{P}-\mathrm{Ag} 1-\mathrm{S} 1$ angles.

In our work, in which the methanol Ol atom hydrogen bonds to the tetrazole N 3 atom [O1-H1 . . N3 $150(4)^{\circ}$, $\mathrm{H} 1 \cdots \mathrm{~N} 32.14$ (3) \AA and N3 $\cdots \mathrm{O} 12.899$ (4) \AA], the $\mathrm{Ag}-$ S-C angle opens to $99.1(1)^{\circ}$ and N 4 moves away from the metal $[3.216(9) \AA]$. The tetrazole unit rotates to become almost coplanar with the $\mathrm{P}_{2} \mathrm{AgS}$ plane [torsion angle $\mathrm{N} 4-\mathrm{C} 37-\mathrm{S} 1-\mathrm{Ag} 1-8.7(3)^{\circ}$] on the side of P 2 , though remarkably this is the more acute side of the trigonal plane [P2—Ag1—S $1114.73(3)^{\circ}$]. Thus, while the hydrogen bonding of methanol to the tetrazole ring appears to lower its basicity and cause a separation of the Ag1 and N4 atoms, it does not appear that a short $\mathrm{Ag} 1 \cdots \mathrm{~N} 4$ interaction is responsible for the angular distortions about the metal.

Fig. 1. ORTEX plot (McArdle, 1995) of the asymmetric unit of (1) showing the atom-labelling scheme. Ellipsoids are represented at the 30% probability level.

Experimental

The title compound was synthesized from tris(triphenylphosphine)silver chloride and ammonium 1-phenyl-1, 2,3,4-tetrazole-5-thiolate in methanol. The product was separated from the ammonium chloride by-product by extraction into hot acetone. After removing the solvent in vacuo, the residue was recrystallized from methanol to yield the title compound (yield 53\%).

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$-$\mathrm{CH}_{4} \mathrm{O}$
$M_{r}=841.66$
Triclinic
$P \overline{1}$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=16.8-17.5^{\circ}$
$a=10.203(2) \AA$
$b=13.047$ (4) \AA
$c=15.990(5) \AA$
$\alpha=68.54(3)^{\circ}$
$\beta=85.85(2)^{\circ}$
$\gamma=76.48(2)^{\circ}$
$V=1925.9(9) \AA^{3}$
$Z=2$
$D_{\mathrm{t}}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
7190 measured reflections
6775 independent reflections
5249 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.017$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.071$
$S=1.015$
6772 reflections
480 parameters
H -atom parameters constrained

$$
\mu=0.702 \mathrm{~mm}^{-1}
$$

$T=170(2) \mathrm{K}$
Block
$0.2 \times 0.2 \times 0.2 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=25.01^{\circ}$
$h=0 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 19$
3 standard reflections every 80 reflections frequency: 150 min intensity decay: none
$u^{\prime}=1 /\left[\sigma^{2}\left(F_{\sigma}^{2}\right)+(0.0378 P)^{2}\right.$ $+0.7153 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.005$
$\Delta \rho_{\text {max }}=0.76 \mathrm{e}^{-3} \AA^{-3}$
Extinction correction: none
Scattering factors from
International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Ag} 1-\mathrm{Pl} 1$	$2.4503(10)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.365(3)$
$\mathrm{Ag} 1-\mathrm{P} 2$	$2.4645(10)$	$\mathrm{N} 1-\mathrm{C} 38$	$1.432(4)$
$\mathrm{Ag} 1-\mathrm{S} 1$	$2.4909(10)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.279(3)$
$\mathrm{S} 1-\mathrm{C} 37$	$1.716(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.359(3)$
$\mathrm{N} 1-\mathrm{C} 37$	$1.363(3)$	$\mathrm{N} 4-\mathrm{C} 37$	$1.335(4)$
$\mathrm{Pl}-\mathrm{Ag} 1-\mathrm{P} 2$	$125.03(3)$	$\mathrm{C} 37-\mathrm{N} 1-\mathrm{C} 38$	$133.1(2)$
$\mathrm{P} 1-\mathrm{Ag} 1-\mathrm{S} 1$	$120.19(3)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 38$	$118.4(2)$
$\mathrm{P} 2-\mathrm{Ag} 1-\mathrm{S} 1$	$114.73(3)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$106.1(2)$
$\mathrm{C} 37-\mathrm{S} 1-\mathrm{Ag} 1$	$99.11(10)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{N} 4$	$112.2(2)$
$\mathrm{C} 37-\mathrm{N} 1-\mathrm{N} 2$	$108.5(2)$	$\mathrm{C} 37-\mathrm{N} 4-\mathrm{N} 3$	$106.1(2)$

H atoms were located from difference Fourier syntheses and were thereafter allowed to refine riding on their parent atoms, except for those of the methyl and hydroxyl groups, which were treated as rotating rigid groups.

Data collection: CAD-4-PC Softu'are (Enraf-Nonius, 1992). Cell refinement: CELDIM in CAD-4-PC Software. Data reduction: XCAD (McArdle \& Higgins, 1995). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEX (McArdle, 1995). Software used to prepare material for publication: SHELXL93.

[^0]
References

Deeth, R. J., Molloy, K. C., Mahon, M. F. \& Whittaker, S. (1992). J. Organomet. Chem. 430, 25-35.
Enraf-Nonius (1992). CAD-4-PC Sofiware. Version 1.1. EnrafNonius, Delft, The Netherlands.
McArdle, P. (1995). J. Appl. Crust. 28, 65.
McArdle, P. \& Higgins. T. (1995). XCAD. Computer Program for Data Reduction. University College Galway, Ireland.
Noth, H., Beck, W. \& Burger, K. (1998). Eur. J. Inorg. Chem. pp. 93-99.
Sheldrick. G. M. (1990). Acta Crvst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 557-558

[3,3'-Iminobis(\mathbf{N}, N-dimethylpropyl-amine)](4'-methoxyflavonolato)zinc(II) perchlorate, $\left[\mathbf{Z n}\left(4^{\prime}-\mathrm{MeOfla}\right)(\mathrm{idpaH})\right] \mathrm{ClO}_{4} \dagger$

Éva Balogh-Hergovich, ${ }^{a}$ József Kaizer, ${ }^{a}$ Gábor
Speier, ${ }^{b}$ Gottrried Huttner ${ }^{c}$ and Peter Rutsch ${ }^{c}$
${ }^{a}$ Research Group for Petrochemistry of the Hungarian Academy of Sciences, 820I Veszprém, Hungary, ${ }^{b}$ Department of Organic Chemistry, University of Veszprém, 8201 Veszprém, Hungary, and 'Department of Inorganic Chemistry, University of Heidelberg, 69120 Heidelberg, Germany. E-mail: speier@almos.vein.hu

(Received 17 March 1998; accepted 7 December 1998)

Abstract

The title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{4}\right)\left(\mathrm{C}_{10} \mathrm{H}_{25} \mathrm{~N}_{3}\right)\right] \mathrm{ClO}_{4}$, contains a cationic five-coordinate zinc(II) complex with distorted trigonal-bipyramidal geometry. Two N atoms of the tridentate $3,3^{\prime}$-iminobis(N, N-dimethylpropylamine) (idpaH) ligand and one O atom of the 4^{\prime}-methoxyflavonolate (4^{\prime}-MeOfla) ligand occupy basal positions, the other O atom of the flavonolate ligand and one N atom of the idpaH ligand being in apical positions.

Comment

Copper(I) and copper(II) complexes of flavonol, as structural and functional models of the $\mathrm{Cu}^{\mathrm{II}}$-containing dioxygenase quercetinase, have been reported (Speier et al., 1990; Balogh-Hergovich et al., 1991; Lippai et al.,

[^1]1997). Zinc and cadmium derivatives have also been prepared by electrochemical synthesis (Annan et al., 1990). The flavonolate ligand (fla) coordinates metals through its 3 -hydroxy and 4 -carbonyl groups. We report here the preparation and crystal structure of a zinc(II) 4^{\prime}-methoxyflavonolate, (I), with the nitrogen-containing ligand 3, 3^{\prime}-iminobis(N, N-dimethylpropylamine) in order to study model reactions of a non-redox metal system.

(I)

The geometry around the zinc(II) centre in compound (I) is approximately trigonal bipyramidal, with $\tau=0.76$. For perfect square-pyramidal and trigonalbipyramidal geometries, the values of τ are zero and unity, respectively, τ being an index of the degree of trigonality within the structural continuum between square-pyramidal and trigonal-bipyramidal geometries (Addison et al., 1984). Two N atoms of the tridentate idpaH ligand, with $\mathrm{Zn}-\mathrm{N}$ distances of 2.148 (4) and 2.115 (3) \AA, and the O atom of the 3-hydroxy group of the 4^{\prime}-methoxyflavonolate ligand occupy basal positions. The O atom of the 4 -carbonyl group of the flavonolate and the N atom of the idpaH ligand, with a $\mathrm{Zn}-\mathrm{N}$ distance of 2.151 (3) \AA, are in apical positions.

The $\mathrm{Zn}-\mathrm{O}$ bond distance of the 4-carbonyl O atom is shorter $[\mathrm{Zn}-\mathrm{O} 22.154(3) \AA$] than that found in the only other known zinc(II) flavonolate complex, namely $\left[\mathrm{Zn}(\mathrm{fla})_{2}\right.$ (tmeda)] [2.240 (1) \AA; Annan et al., 1990; tmeda is $N, N, N^{\prime}, N^{\prime}$-tetramethylenediamine], and

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1275). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Alternative name: [3, 3^{\prime}-iminobis $(N, N$-dimethylpropylamine- N)][2-(4-hydroxyphenyl)-4-oxo-4 H -chromen-3-olato- O^{3}, O^{4})zinc(II) perchlorate.

